Current Issue : April-June Volume : 2023 Issue Number : 2 Articles : 5 Articles
In our continued search for bioactive metabolites from cultures of rare Actinobacteria resources from all over Taiwan and various natural ecological environments, an active antimicrobial strain of Acrocarpospora punica 04107M was collected in Taitung County in Taiwan and prepared from soil. The bioassay-guided fractionation of the BuOH extract of a culture broth from A. punica 04107M led to the isolation of five previously undescribed compounds: Acrocarposporins A–E (Compounds 1–5). All the constituents were confirmed by HRESIMS and 1D- and 2D-NMR spectroscopy. Their antifungal activity was also evaluated. Our results showed that four constituents (Compounds 1, 2, 4, and 5) possessed mild antifungal activity against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae. It is worth mentioning that the chemical composition of Acrocarpospora punica 04107M has never been studied. This is the first report on diterpenoid metabolites from the genus Acrocarpospora....
Background: Staphylococcus aureus is an opportunistic pathogen and a major cause of nosocomial and community-acquired infections. The alarming rise in Methicillin-resistant S. aureus (MRSA) infection worldwide and the emergence of vancomycin-resistant MRSA strains have created an urgent need to identify new and alternative treatment options. Triple combinations of antimicrobials with different antimicrobial mechanisms may be a good choice to overcome antimicrobial resistance. Methods: In this study, we combine two natural compounds: kuraridin from Sophora flavescens and epicatechin gallate (ECG) from Camellia sinensis (Green tea), which could provide the best synergy with antibiotics against a selected panel of laboratory MRSA with known resistant mechanisms and clinical community-associated (CA) and hospital-associated (HA) MRSA as well. Results: The combined use of ECG and kuraridin was efficacious in inhibiting the growth of a panel of tested MRSA strains. The antibacterial activities of gentamicin, fusidic acid and vancomycin could be further enhanced by the addition of ECG and kuraridin. In time-kill study, when vancomycin (0.5 μg/mL) was combined with ECG (2 μg/mL) and kuraridin (2 μg/mL), a very strong bactericidal growth inhibition against 3 tested strains ATCC25923, MRSA ST30 and ST239 was observed from 2 to 24 h. ECG and kuraridin both possess anti-inflammatory activities in bacterial toxin-stimulated peripheral blood mononuclear cells by suppressing the production of inflammatory cytokines (IL-1β, IL-6 and TNFα) and are non-cytotoxic. In a murine pneumonia model infected with ATCC25923, MRSA ST30 or ST239, the combined use of ECG and kuraridin with vancomycin could significantly reduce bacterial counts. Conclusions: The present findings reveal the potential of ECG and kuraridin combination as a non-toxic herbal and antibiotics combination for MRSA treatment with antibacterial and anti-inflammatory activities....
Background and Objective: Tonsillar crypts can be considered a reservoir for a variety of bacterial species. Some bacterial species can be considered part of the normal oropharyngeal microbiota. The roles of other pathogens, for example, the so-called non-oral and respiratory pathogens Staphylococcus aureus, Klebsiella, Pseudomonas, and Acinetobacter spp., which have strong virulence factors, biofilm production capacity, and the ability to initiate infectious diseases, are unclear. The purpose of this study was to detect the presence of S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. within the tonsillar crypts of healthy individuals, and to analyze the pathogens’ biofilm production and antibacterial resistances. Results: Only common oropharyngeal microbiota were cultivated from 37 participant samples (40.7%). The most commonly isolated pathogenic bacterium was S. aureus, which was isolated in 41 (45%) participant samples. K. pneumoniae was isolated in seven (7.7%) samples, Acinetobacter spp. were isolated in five (5.5%) samples, and P. aeruginosa was isolated in two (2.2%) samples. Biofilm producers predominated among the pathogenic bacteria; 51 strains were biofilm producers, and among them, 31 strains were moderate or strong biofilm producers. The tested S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. strains were sensitive to commonly used antibiotics (amoxicillin–clavulanic acid, clindamycin, or ciprofloxacin). One of the isolated S. aureus strains was MRSA. Conclusions: Biofilm is a commonly observed feature that seems to be a naturally existing form of pathogenic bacteria colonizing human tissue. S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. occasionally occur in the tonsillar crypts of healthy individuals, and, therefore, it is most likely that S. aureus, K. pneumoniae, P. aeruginosa, and Acinetobacter spp. in opportunistic tonsillar infections originate from the tonsillar crypt microbiota....
Polymyxins are commonly used as the last resort for the treatment of MDR Acinetobacter baumannii and Klebsiella pneumoniae nosocomial infections; however, apart from the already known toxicity issues, resistance to these agents is emerging. In the present study, we assessed the in vitro synergistic activity of antimicrobial combinations against carbapenem-resistant and colistin-resistant A. baumannii and K. pneumoniae in an effort to provide more options for their treatment. Two hundred A. baumannii and one hundred and six K. pneumoniae single clinical isolates with resistance to carbapenems and colistin, recovered between 1 January 2021 and 31 July 2022,were included. A. baumannii were tested by the MIC test strip fixed-ratio method for combinations of colistin with either meropenem or rifampicin or daptomycin. K. pneumoniae were tested for the combinations of colistin with meropenem and ceftazidime/avibactam with aztreonam. Synergy was observed at: 98.99% for colistin and meropenem against A. baumannii; 91.52% for colistin and rifampicin; and 100% for colistin and daptomycin. Synergy was also observed at: 73.56% for colistin and meropenem against K. pneumoniae and; and 93% for ceftazidime/avibactam with aztreonam. The tested antimicrobial combinations presented high synergy rates, rendering them valuable options against A. baumannii and K. pneumoniae infections....
Colistin is a drug of last resort to treat extreme drug-resistant Enterobacterales, but is limited by dose-dependent toxicity and the emergence of resistance. A recently developed antimicrobial pseudopeptide, Pep16, which acts on the cell membrane, may be synergistic with colistin and limit the emergence of resistance. We investigated Pep16 activity against Escherichia coli with varying susceptibility to colistin, in vitro and in a murine peritonitis model. Two isogenic derivatives of E. coli CFT073 (susceptible and resistant to colistin) and 2 clinical isolates (susceptible (B119) and resistant to colistin (Af31)) were used. Pep16 activity, alone and in combination with colistin, was determined in vitro (checkerboard experiments, time–kill curves, and flow cytometry to investigate membrane permeability). Toxicity and pharmacokinetic analyses of subcutaneous Pep16 were performed in mice, followed by the investigation of 10 mg/kg Pep16 + 10 mg/kg colistin (mimicking human concentrations) in a murine peritonitis model. Pep16 alone was inactive (MICs = 32–64 mg/L; no bactericidal effect). A concentration-dependent bactericidal synergy of Pep16 with colistin was evidenced on all strains, confirmed by flow cytometry. In vivo, Pep16 alone was ineffective. When Pep16 and colistin were combined, a significant decrease in bacterial counts in the spleen was evidenced, and the combination prevented the emergence of colistin-resistant mutants, compared to colistin alone. Pep16 synergizes with colistin in vitro, and the combination is more effective than colistin alone in a murine peritonitis by reducing bacterial counts and the emergence of resistance. Pep16 may optimize colistin use, by decreasing the doses needed, while limiting the emergence of colistin-resistant mutants....
Loading....